DeepSeek Hosting | Private AI Model Deployment on GPU Servers – B2BHostingClub

Celebrate Christmas and New Year with 25% OFF all services at B2BHostingClub.

Pre-installed DeepSeek-R1-70B LLM Hosting

B2BHOSTINGCLUB offers best budget GPU servers for DeepSeek-R1 LLMs. You'll get pre-installed Open WebUI + Ollama, it is a popluar way to run DeepSeek-R1 models.

Enterprise GPU Dedicated Server - RTX A6000

/mo

  • 256GB RAM
  • GPU: Nvidia Quadro RTX A6000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

Enterprise GPU Dedicated Server - A100(80GB)

/mo

  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 19.5 TFLOPS

Enterprise GPU Dedicated Server - H100

/mo

  • 256GB RAM
  • GPU: Nvidia H100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Hopper
  • CUDA Cores: 14,592
  • Tensor Cores: 456
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 183TFLOPS

Pre-installed DeepSeek-R1-32B LLM Hosting

B2BHOSTINGCLUB offers best budget GPU servers for DeepSeek-R1 LLMs. You'll get pre-installed Open WebUI + Ollama + DeepSeek-R1-32B, it is a popluar way to self-hosted LLM models.

Advanced GPU Dedicated Server - A5000

/mo

  • 128GB RAM
  • GPU: Nvidia Quadro RTX A5000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS

Enterprise GPU Dedicated Server - RTX 4090

/mo

  • 256GB RAM
  • GPU: GeForce RTX 4090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 16,384
  • Tensor Cores: 512
  • GPU Memory: 24 GB GDDR6X
  • FP32 Performance: 82.6 TFLOPS

Enterprise GPU Dedicated Server - RTX 5090

/mo

  • 256GB RAM
  • GPU: GeForce RTX 5090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Blackwell 2.0
  • CUDA Cores: 21,760
  • Tensor Cores: 680
  • GPU Memory: 32 GB GDDR7
  • FP32 Performance: 109.7 TFLOPS
  • This is a pre-sale product. Delivery will be completed within 2–10 days after payment.

Enterprise GPU Dedicated Server - A100

/mo

  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS

DeepSeek Hosting with Ollama
GPU Recommendation

Deploying DeepSeek models using Ollama is a flexible and developer-friendly way to run powerful LLMs locally or on servers. However, choosing the right GPU is critical to ensure smooth performance and fast inference, especially as model sizes scale from lightweight 1.5B to massive 70B+ parameters.

Model Name
Size
(4-bit Quantization)
Recommended GPUs
Concurrent Requests
Tokens/s
deepseek-ai/
DeepSeek‑R1‑Distill‑Qwen‑1.5B
~3GB T1000 < RTX3060 < RTX4060
< 2*RTX3060 < 2*RTX4060 < A4000 < V100
50 1500-5000
deepseek-ai/
deepseek‑coder‑6.7b‑instruct
~13.4GB A5000 < RTX4090 50 1375-4120
deepseek-ai/Janus‑Pro‑7B ~14GB A5000 < RTX4090 50 1333-4009
deepseek-ai/DeepSeek‑R1‑Distill‑Qwen‑7B ~14GB A5000 < RTX4090 50 1333-4009
deepseek-ai/DeepSeek‑R1‑Distill‑Llama‑8B ~16GB 2*A4000 < 2*V100 < A5000 < RTX4090 50 1450-2769
deepseek-ai/DeepSeek‑R1‑Distill‑Qwen‑14B ~28GB 3*V100 < 2*A5000 < A40 < A6000 < A100-40gb < 2*RTX4090 50 449-861
deepseek-ai/DeepSeek‑R1‑Distill‑Qwen‑32B ~65GB A100-80gb < 2*A100-40gb < 2*A6000 < H100 50 577-1480
deepseek-ai/deepseek‑coder‑33b‑instruct ~66GB A100-80gb < 2*A100-40gb < 2*A6000 < H100 50 570-1470
deepseek-ai/DeepSeek‑R1‑Distill‑Llama‑70B ~135GB 4*A6000 50 466
deepseek-ai/DeepSeek‑Prover‑V2‑671B ~1350GB -- -- --
deepseek-ai/DeepSeek‑V3 ~1350GB -- -- --
deepseek-ai/DeepSeek‑R1 ~1350GB -- -- --
deepseek-ai/DeepSeek‑R1‑0528 ~1350GB -- -- --
deepseek-ai/DeepSeek‑V3‑0324 ~1350GB -- -- --

Choose The Best GPU Plans for DeepSeek R1/V2/V3/Distill Hosting

If the pre-installed DeepSeek product does not meet your needs, you can rent a server, install and manage any model by yourself—everything under your control.

Professional GPU VPS - A4000

/mo

  • 32GB RAM
  • Dedicated GPU: Quadro RTX A4000
  • 24 CPU Cores
  • 320GB SSD
  • 300Mbps Unmetered Bandwidth
  • OS: Linux / Windows 10/11
  • Once per 2 Weeks Backup
  • Single GPU Specifications:
  • CUDA Cores: 6,144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS

Advanced GPU Dedicated Server - A5000

/mo

  • 128GB RAM
  • GPU: Nvidia Quadro RTX A5000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS

Advanced GPU VPS - RTX 5090

/mo

  • 96GB RAM
  • Dedicated GPU: GeForce RTX 5090
  • 32 CPU Cores
  • 400GB SSD
  • 500Mbps Unmetered Bandwidth
  • OS: Linux / Windows 10/11
  • Once per 2 Weeks Backup
  • Single GPU Specifications:
  • CUDA Cores: 21,760
  • Tensor Cores: 680
  • GPU Memory: 32GB GDDR7
  • FP32 Performance: 109.7 TFLOPS

Enterprise GPU Dedicated Server - RTX A6000

/mo

  • 256GB RAM
  • GPU: Nvidia Quadro RTX A6000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

Why DeepSeek Hosting Needs a Specialized Hardware + Software Stack

DeepSeek models are state-of-the-art large language models (LLMs) designed for high-performance reasoning, multi-turn conversations, and code generation. Hosting them effectively requires a specialized combination of hardware and software due to their size, complexity, and compute demands.

DeepSeek Models Are Large and Compute-Intensive

Model sizes range from 1.5B to 70B+ parameters, with FP16 memory footprints reaching up to 100+ GB. Larger models like DeepSeek-R1-32B or 236B require multi-GPU setups or high-end GPUs with large VRAM.

Powerful GPUs Are Required

GPU VRAM needs to be greater than 1.2 times the model size, e.g. RTX4090 (24gb vram) cannot infer LLMs larger than 20gb.

Efficient Inference Engines Are Critical

Serving DeepSeek models efficiently requires optimized backends, for example: vLLM is best for high throughput and concurrent request processing. TGI is scalable and supports Hugging Face natively. Ollama is great for local testing and development environments, and TensorRT-LLM/GGML is used for advanced low-level optimizations.

Scalable Infrastructure Is a Must

For production or research workloads, DeepSeek hosting requires containerization (Docker, NVIDIA runtime), orchestration (Kubernetes, Helm), API gateway and load balancing (Nginx, Traefik), monitoring and autoscaling (Prometheus, Grafana).

Frequently asked questions

Hardware needs vary by model size:
Small models (1.5B – 7B): ≥16GB VRAM (e.g., RTX 3090, 4090)
Medium models (8B – 14B): ≥24–48GB VRAM (e.g., A40, A100, 4090)
Large models (32B – 70B+): Multi-GPU setup or high-memory GPUs (e.g., A100 80GB, H100)
You can serve DeepSeek models using:
vLLM (high throughput, optimized for production)
Ollama (simple local inference, CLI-based)
TGI (Text Generation Inference)
Exllama / GGUF backends (for quantized models)
Most DeepSeek models are available on the Hugging Face Hub. Popular variants include:
deepseek-ai/deepseek-llm-r1-7b
deepseek-ai/deepseek-llm-v2-14b
deepseek-ai/deepseek-coder-v3
deepseek-ai/deepseek-llm-r1-distill
Yes. Many DeepSeek models have int4 / GGUF quantized versions, making them suitable for lower-VRAM GPUs (8–16GB). These versions can be run using tools like llama.cpp, Ollama, or exllama.
Yes. Most models support parameter-efficient fine-tuning (PEFT) such as LoRA or QLoRA. Make sure your hosting stack includes libraries like PEFT, bitsandbytes, and that your server has enough RAM + disk space for checkpoint storage.
R1: The first release of general-purpose chat/instruction models
V2: Improved alignment, larger context length, better reasoning
V3 (Coder): Optimized for code generation and understanding
Distill: Smaller, faster versions distilled from R1 for inference efficiency
The DeepSeek-R1-Distill-Llama-8B or Qwen-7B models are ideal for fast inference with good instruction-following ability. These can run on RTX 3060+ or T4 with quantization.
You can serve models via RESTful APIs using:
vLLM + FastAPI / OpenLLM
TGI with built-in OpenAI-compatible API
Custom Flask app over Ollama
For production workloads, pair with Nginx or Traefik for reverse proxy and SSL.
Yes, but only if you have high VRAM GPUs (e.g., 80–100GB A100)
At present, DeepSeek does not offer first-party hosting. However, many cloud GPU providers and inference platforms (e.g., vLLM on Kubernetes, Modal, Banana, Replicate) allow you to host these models easily.

Our Customers Love Us

From 24/7 support that acts as your extended team to incredibly fast website performance

Need help choosing a plan?

Need help? We're always here for you.