Ollama Hosting, Deploy Your own AI Chatbot with Ollama

Celebrate Christmas and New Year with 25% OFF all services at B2BHostingClub.

Choose The Best GPU Plans for Mistral 7B-123B Hosting

Express GPU Dedicated Server - P1000

/mo

  • 32GB RAM
  • GPU: Nvidia Quadro P1000
  • Eight-Core Xeon E5-2690
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Pascal
  • CUDA Cores: 640
  • GPU Memory: 4GB GDDR5
  • FP32 Performance: 1.894 TFLOPS

Basic GPU Dedicated Server - T1000

/mo

  • 64GB RAM
  • GPU: Nvidia Quadro T1000
  • Eight-Core Xeon E5-2690
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Turing
  • CUDA Cores: 896
  • GPU Memory: 8GB GDDR6
  • FP32 Performance: 2.5 TFLOPS

Basic GPU Dedicated Server - GTX 1650

/mo

  • 64GB RAM
  • GPU: Nvidia GeForce GTX 1650
  • Eight-Core Xeon E5-2667v3
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Turing
  • CUDA Cores: 896
  • GPU Memory: 4GB GDDR5
  • FP32 Performance: 3.0 TFLOPS

Basic GPU Dedicated Server - GTX 1660

/mo

  • 64GB RAM
  • GPU: Nvidia GeForce GTX 1660
  • Dual 8-Core Xeon E5-2660
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Turing
  • CUDA Cores: 1408
  • GPU Memory: 6GB GDDR6
  • FP32 Performance: 5.0 TFLOPS

Advanced GPU Dedicated Server - V100

/mo

  • 128GB RAM
  • GPU: Nvidia V100
  • Dual 12-Core E5-2690v3
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Volta
  • CUDA Cores: 5,120
  • Tensor Cores: 640
  • GPU Memory: 16GB HBM2
  • FP32 Performance: 14 TFLOPS

Professional GPU Dedicated Server - RTX 2060

/mo

  • 128GB RAM
  • GPU: Nvidia GeForce RTX 2060
  • Dual 8-Core E5-2660
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 1920
  • Tensor Cores: 240
  • GPU Memory: 6GB GDDR6
  • FP32 Performance: 6.5 TFLOPS

Advanced GPU Dedicated Server - RTX 2060

/mo

  • 128GB RAM
  • GPU: Nvidia GeForce RTX 2060
  • Dual 20-Core Gold 6148
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 1920
  • Tensor Cores: 240
  • GPU Memory: 6GB GDDR6
  • FP32 Performance: 6.5 TFLOPS

Advanced GPU Dedicated Server - RTX 3060 Ti

/mo

  • 128GB RAM
  • GPU: GeForce RTX 3060 Ti
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 4864
  • Tensor Cores: 152
  • GPU Memory: 8GB GDDR6
  • FP32 Performance: 16.2 TFLOPS

Professional GPU VPS - A4000

/mo

  • 32GB RAM
  • Dedicated GPU: Quadro RTX A4000
  • 24 CPU Cores
  • 320GB SSD
  • 300Mbps Unmetered Bandwidth
  • OS: Linux / Windows 10/11
  • Once per 2 Weeks Backup
  • Single GPU Specifications:
  • CUDA Cores: 6,144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS

Advanced GPU Dedicated Server - A4000

/mo

  • 12GB RAM
  • GPU: Nvidia Quadro RTX A4000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS

Advanced GPU Dedicated Server - A5000

/mo

  • 128GB RAM
  • GPU: Nvidia Quadro RTX A5000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS

Enterprise GPU Dedicated Server - A40

/mo

  • 256GB RAM
  • GPU: Nvidia A40
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 37.48 TFLOPS

Basic GPU Dedicated Server - RTX 5060

/mo

  • 64GB RAM
  • GPU: Nvidia GeForce RTX 5060
  • 24-Core Platinum 8160
  • 120GB SSD + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Blackwell 2.0
  • CUDA Cores: 4608
  • Tensor Cores: 144
  • GPU Memory: 8GB GDDR7
  • FP32 Performance: 23.22 TFLOPS
  • This is a pre-sale product. Delivery will be completed within 2–7 days after payment.

Enterprise GPU Dedicated Server - RTX 5090

/mo

  • 256GB RAM
  • GPU: GeForce RTX 5090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Blackwell 2.0
  • CUDA Cores: 21,760
  • Tensor Cores: 680
  • GPU Memory: 32 GB GDDR7
  • FP32 Performance: 109.7 TFLOPS
  • This is a pre-sale product. Delivery will be completed within 2–10 days after payment.

Enterprise GPU Dedicated Server - A100

/mo

  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS

Enterprise GPU Dedicated Server - A100(80GB)

/mo

  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 19.5 TFLOPS

Enterprise GPU Dedicated Server - H100

/mo

  • 256GB RAM
  • GPU: Nvidia H100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Hopper
  • CUDA Cores: 14,592
  • Tensor Cores: 456
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 183TFLOPS

Multi-GPU Dedicated Server- 2xRTX 4090

/mo

  • 256GB RAM
  • GPU: 2 x GeForce RTX 4090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ada Lovelace
  • CUDA Cores: 16,384
  • Tensor Cores: 512
  • GPU Memory: 24 GB GDDR6X
  • FP32 Performance: 82.6 TFLOPS

Multi-GPU Dedicated Server- 2xRTX 5090

/mo

  • 256GB RAM
  • GPU: 2 x GeForce RTX 5090
  • Dual E5-2699v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Blackwell 2.0
  • CUDA Cores: 21,760
  • Tensor Cores: 680
  • GPU Memory: 32 GB GDDR7
  • FP32 Performance: 109.7 TFLOPS
  • This is a pre-sale product. Delivery will be completed within 2–10 days after payment.

Multi-GPU Dedicated Server - 3xV100

/mo

  • 256GB RAM
  • GPU: 3 x Nvidia V100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Volta
  • CUDA Cores: 5,120
  • Tensor Cores: 640
  • GPU Memory: 16GB HBM2
  • FP32 Performance: 14 TFLOPS

Multi-GPU Dedicated Server - 3xRTX A5000

/mo

  • 256GB RAM
  • GPU: 3 x Quadro RTX A5000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS

Multi-GPU Dedicated Server - 3xRTX A6000

/mo

  • 256GB RAM
  • GPU: 3 x Quadro RTX A6000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

Multi-GPU Dedicated Server - 4xA100

/mo

  • 512GB RAM
  • GPU: 4 x Nvidia A100
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS

Multi-GPU Dedicated Server - 4xRTX A6000

/mo

  • 512GB RAM
  • GPU: 4 x Quadro RTX A6000
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

Mistral Hosting with Ollama — GPU Recommendation

Mistral Hosting with Ollama offers a fast, containerized way to run open-weight Mistral models locally or on servers with minimal setup. Ollama supports models like mistral, mistral-instruct, mistral-openorca, and mistral-nemo through a simple CLI and HTTP API interface, making it ideal for developers and lightweight production use.

Model Name
Size (4-bit Quantization)
Recommended GPUs
Tokens/s
mistral:7b,
mistral-openorca:7b,
mistrallite:7b,
dolphin-mistral:7b
4.1-4.4GB T1000 < RTX3060 < RTX4060 < RTX5060 23.79-73.17
mistral-nemo:12b 7.1GB A4000 < V100 38.46-67.51
mistral-small:22b,
mistral-small:24b
13-14GB A5000 < RTX4090 < RTX5090 37.07-65.07
mistral-large:123b 73GB A100-80gb < H100 ~30

Mistral Hosting with vLLM + Hugging Face
GPU Recommendation

Mistral Hosting with vLLM + Hugging Face provides a powerful, scalable solution for deploying Mistral models in production environments. Combining the speed and efficiency of the vLLM inference engine with the flexibility of Hugging Face Transformers, this setup supports high-throughput, low-latency serving of base and instruction-tuned Mistral models such as mistral-7B, mistral-instruct, mistral-openorca, and mistral-nemo.

Model Name
Size (16-bit Quantization
Recommended GPUs
Concurrent Requests
Tokens/s
mistralai/Pixtral-12B-2409 ~25GB A100-40gb < A6000 < 2*RTX4090 50 713.45-861.14
mistralai/Mistral-Small-3.2-24B-Instruct-2506
mistralai/Mistral-Small-3.1-24B-Instruct-2503
~47GB 2*A100-40gb < H100 50 ~1200-2000
mistralai/Pixtral-Large-Instruct-2411 292GB 8*A6000 50 ~466.32

Why Mistral Hosting Needs a Specialized Hardware + Software Stack

Hosting Qwen models — such as Qwen-1.5B, Qwen-7B, Qwen-14B, or Qwen-72B — requires a carefully designed hardware + software stack to ensure fast, scalable, and cost-efficient inference. These models are powerful but resource-intensive, and standard infrastructure often fails to meet their performance and memory requirements.

High VRAM Requirements

Mistral models—especially larger ones like Mixtral-8x7B—require substantial GPU memory (24GB–80GB) for inference. Without specialized GPUs (e.g., A100, L40S, 4090), full-precision or multi-user workloads become inefficient or impossible to run.

Optimized Inference Performance

To achieve low latency and high throughput, especially in real-time applications, Mistral hosting benefits from optimized inference engines like vLLM, which support advanced techniques such as continuous batching and paged attention.

Quantization & Format Compatibility

Mistral models are available in multiple formats (FP16, INT8, GGUF, AWQ), requiring compatible runtimes like Ollama, llama.cpp, or vLLM. Hosting stacks must support these toolchains to balance speed, memory, and accuracy.

Scalability and API Integration

Running Mistral in production often involves serving multiple concurrent requests, managing memory efficiently, and integrating with OpenAI-compatible APIs. A specialized software stack enables proper model loading, queue handling, and endpoint management for scalable deployments.

Frequently asked questions

Most of these models are based on Mistral-7B or Mixtral-8x7B, so you’ll need a GPU with at least 24GB VRAM (e.g., RTX 4090, A6000, A100 40GB/80GB, L40S). For quantized versions (GGUF, INT4/8), hosting is possible on GPUs with 16GB VRAM or even high-end CPUs using llama.cpp.
You can run these models using:
vLLM (for high-throughput FP16/AWQ serving)
Ollama (for local GGUF quantized inference)
Transformers + TGI (for full-precision inference)
llama.cpp (for lightweight, CPU/GPU quantized deployment)
Yes. All of these models typically have GGUF, GPTQ, or AWQ formats available on Hugging Face or in Ollama’s registry, allowing for memory-efficient inference with minimal performance loss.
Yes, LoRA fine-tuning is possible with tools like PEFT and QLoRA. However, LoRA compatibility depends on the base model format—usually the full-precision or AWQ versions are used for training, not GGUF.
Mistral Small: A lighter variant with faster inference, ideal for edge deployments.
OpenOrca: Instruction-tuned for reasoning and complex task following.
Pixtral: A vision-language version of Mixtral, for multimodal inputs (image + text).
Mistral Nemo: Usually focused on high-quality summarization or chat, depending on the dataset.

Our Customers Love Us

From 24/7 support that acts as your extended team to incredibly fast website performance

Need help choosing a plan?

Need help? We're always here for you.