Ollama Hosting, Deploy Your own AI Chatbot with Ollama

Celebrate Christmas and New Year with 25% OFF all services at B2BHostingClub.

Choose The Best GPU Plans for Phi Service Hosting

Express GPU Dedicated Server - P1000

/mo

  • 32GB RAM
  • GPU: Nvidia Quadro P1000
  • Eight-Core Xeon E5-2690
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Pascal
  • CUDA Cores: 640
  • GPU Memory: 4GB GDDR5
  • FP32 Performance: 1.894 TFLOPS

Basic GPU Dedicated Server - T1000

/mo

  • 64GB RAM
  • GPU: Nvidia Quadro T1000
  • Eight-Core Xeon E5-2690
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Turing
  • CUDA Cores: 896
  • GPU Memory: 8GB GDDR6
  • FP32 Performance: 2.5 TFLOPS

Basic GPU Dedicated Server - GTX 1650

/mo

  • 64GB RAM
  • GPU: Nvidia GeForce GTX 1650
  • Eight-Core Xeon E5-2667v3
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Turing
  • CUDA Cores: 896
  • GPU Memory: 4GB GDDR5
  • FP32 Performance: 3.0 TFLOPS

Basic GPU Dedicated Server - GTX 1660

/mo

  • 64GB RAM
  • GPU: Nvidia GeForce GTX 1660
  • Dual 8-Core Xeon E5-2660
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Turing
  • CUDA Cores: 1408
  • GPU Memory: 6GB GDDR6
  • FP32 Performance: 5.0 TFLOPS

Advanced GPU Dedicated Server - V100

/mo

  • 128GB RAM
  • GPU: Nvidia V100
  • Dual 12-Core E5-2690v3
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Volta
  • CUDA Cores: 5,120
  • Tensor Cores: 640
  • GPU Memory: 16GB HBM2
  • FP32 Performance: 14 TFLOPS

Professional GPU Dedicated Server - RTX 2060

/mo

  • 128GB RAM
  • GPU: Nvidia GeForce RTX 2060
  • Dual 8-Core E5-2660
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 1920
  • Tensor Cores: 240
  • GPU Memory: 6GB GDDR6
  • FP32 Performance: 6.5 TFLOPS

Advanced GPU Dedicated Server - RTX 2060

/mo

  • 128GB RAM
  • GPU: Nvidia GeForce RTX 2060
  • Dual 20-Core Gold 6148
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 1920
  • Tensor Cores: 240
  • GPU Memory: 6GB GDDR6
  • FP32 Performance: 6.5 TFLOPS

Advanced GPU Dedicated Server - RTX 3060 Ti

/mo

  • 128GB RAM
  • GPU: GeForce RTX 3060 Ti
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 4864
  • Tensor Cores: 152
  • GPU Memory: 8GB GDDR6
  • FP32 Performance: 16.2 TFLOPS

Professional GPU VPS - A4000

/mo

  • 32GB RAM
  • Dedicated GPU: Quadro RTX A4000
  • 24 CPU Cores
  • 320GB SSD
  • 300Mbps Unmetered Bandwidth
  • OS: Linux / Windows 10/11
  • Once per 2 Weeks Backup
  • Single GPU Specifications:
  • CUDA Cores: 6,144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS

Advanced GPU Dedicated Server - A4000

/mo

  • 12GB RAM
  • GPU: Nvidia Quadro RTX A4000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS

Advanced GPU Dedicated Server - A5000

/mo

  • 128GB RAM
  • GPU: Nvidia Quadro RTX A5000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS

Enterprise GPU Dedicated Server - A40

/mo

  • 256GB RAM
  • GPU: Nvidia A40
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 37.48 TFLOPS

Basic GPU Dedicated Server - RTX 5060

/mo

  • 64GB RAM
  • GPU: Nvidia GeForce RTX 5060
  • 24-Core Platinum 8160
  • 120GB SSD + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Blackwell 2.0
  • CUDA Cores: 4608
  • Tensor Cores: 144
  • GPU Memory: 8GB GDDR7
  • FP32 Performance: 23.22 TFLOPS
  • This is a pre-sale product. Delivery will be completed within 2–7 days after payment.

Enterprise GPU Dedicated Server - RTX 5090

/mo

  • 256GB RAM
  • GPU: GeForce RTX 5090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Blackwell 2.0
  • CUDA Cores: 21,760
  • Tensor Cores: 680
  • GPU Memory: 32 GB GDDR7
  • FP32 Performance: 109.7 TFLOPS
  • This is a pre-sale product. Delivery will be completed within 2–10 days after payment.

Enterprise GPU Dedicated Server - A100

/mo

  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS

Enterprise GPU Dedicated Server - A100(80GB)

/mo

  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 19.5 TFLOPS

Enterprise GPU Dedicated Server - H100

/mo

  • 256GB RAM
  • GPU: Nvidia H100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Hopper
  • CUDA Cores: 14,592
  • Tensor Cores: 456
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 183TFLOPS

Multi-GPU Dedicated Server- 2xRTX 4090

/mo

  • 256GB RAM
  • GPU: 2 x GeForce RTX 4090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ada Lovelace
  • CUDA Cores: 16,384
  • Tensor Cores: 512
  • GPU Memory: 24 GB GDDR6X
  • FP32 Performance: 82.6 TFLOPS

Multi-GPU Dedicated Server- 2xRTX 5090

/mo

  • 256GB RAM
  • GPU: 2 x GeForce RTX 5090
  • Dual E5-2699v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Blackwell 2.0
  • CUDA Cores: 21,760
  • Tensor Cores: 680
  • GPU Memory: 32 GB GDDR7
  • FP32 Performance: 109.7 TFLOPS
  • This is a pre-sale product. Delivery will be completed within 2–10 days after payment.

Multi-GPU Dedicated Server - 3xV100

/mo

  • 256GB RAM
  • GPU: 3 x Nvidia V100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Volta
  • CUDA Cores: 5,120
  • Tensor Cores: 640
  • GPU Memory: 16GB HBM2
  • FP32 Performance: 14 TFLOPS

Multi-GPU Dedicated Server - 3xRTX A5000

/mo

  • 256GB RAM
  • GPU: 3 x Quadro RTX A5000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS

Multi-GPU Dedicated Server - 3xRTX A6000

/mo

  • 256GB RAM
  • GPU: 3 x Quadro RTX A6000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

Multi-GPU Dedicated Server - 4xA100

/mo

  • 512GB RAM
  • GPU: 4 x Nvidia A100
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS

Multi-GPU Dedicated Server - 4xRTX A6000

/mo

  • 512GB RAM
  • GPU: 4 x Quadro RTX A6000
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

Phi Hosting with Ollama
GPU Recommendation

Ollama abstracts away the complexity of local LLM hosting with an OpenAI-compatible API, making it easy to run Phi models on laptops, desktops, or lightweight servers. This setup is perfect for developers building intelligent assistants, reasoning agents, or on-device chatbots.

Model Name
Size (4-bit Quantization)
Recommended GPUs
Tokens/s
phi:2.7b 1.6GB P1000 < GTX1650 < GTX1660 < RTX2060 < RTX5060 19.46~132.97
phi3:3.8b
phi4-mini:3.8b
2.2GB P1000 < GTX1650 < GTX1660 < RTX2060 < RTX5060 18.87-75.94
phi3:14b 7.9GB A4000 < V100 38.46-67.51
phi4:14b 9.1GB A4000 < V100 30.20-48.63

Phi Hosting with vLLM + Hugging Face — GPU Recommendation

Using vLLM ensures optimal GPU memory utilization and fast token generation, while Hugging Face Transformers provides access to the latest model variants and formats. This hosting stack is ideal for building reasoning engines, chatbots, and AI agents powered by the efficient Phi family.

Model Name
Size (16-bit Quantization)
Recommended GPUs
Concurrent Requests
Tokens/s
microsoft/Phi-3.5-vision-instruct ~8.8GB V100 < A5000 < RTX4090 50 ~2000-6000

Why Phi Hosting Needs a Specialized Hardware + Software Stack

Optimized for Lightweight Yet Demanding Models

Despite being smaller than many LLMs, Phi models like Phi-4 and Phi-4-Reasoning are optimized for complex reasoning and instruction following, which demands efficient memory management and fast token generation—necessitating well-configured GPUs and inference engines.

Support for Quantized and Full-Precision Variants

Phi models are available in formats like FP16, AWQ, and GGUF (INT4/INT8). Hosting them efficiently requires software that supports format-specific optimizations—such as vLLM for AWQ and Ollama for GGUF—to balance performance and hardware resource usage.

Low Latency, High Throughput Needs

Whether self-hosted or serving users via API, Phi hosting requires real-time responsiveness. Engines like vLLM or TGI are designed for dynamic batching and asynchronous execution, which standard model runtimes can’t handle well under load.

Hardware Constraints and Deployment Flexibility

Phi models are often used in low-cost or edge scenarios, so selecting the right GPU memory size and architecture is critical. The hosting stack must be optimized for deployment on everything from consumer GPUs (like RTX 3060/3090) to enterprise-grade cards (A100/4090) to ensure cost-effective scalability.

Frequently asked questions

Phi-2.7B / 3.8B can run efficiently on GPUs with 8–16GB VRAM, especially in quantized formats (e.g., GGUF or AWQ). Phi-14B requires at least 24GB VRAM for quantized inference, and 40GB+ (like A100) for full-precision (FP16/FP32) inference.
Ollama (for GGUF format; great for local quantized models)
vLLM (for AWQ/FP16/FP32 models; optimized for throughput and batching)
Transformers + TGI (for REST API deployments)
llama.cpp (for edge or lightweight environments)
Technically yes, especially the Phi-2.7B in INT4 format using llama.cpp. However, performance will be very slow without GPU acceleration.
Yes. Most Phi models (including Phi-3 and Phi-14B) are available in GGUF (INT4/INT8) and AWQ (Weight-only quantization) formats, reducing memory usage while preserving reasonable performance.
For Phi-2.7B / 3.8B: RTX 3060, 4060 Ti, A4000 (with 8–16GB VRAM). For Phi-14B: RTX 4090, A100 (24–40GB VRAM depending on precision level)

Our Customers Love Us

From 24/7 support that acts as your extended team to incredibly fast website performance

Need help choosing a plan?

Need help? We're always here for you.