LLaMA Hosting | Private Meta LLaMA AI Deployment on GPU – B2BHostingClub

Celebrate Christmas and New Year with 25% OFF all services at B2BHostingClub.

Pre-installed Llama3.1-70B LLM Hosting

Llama 3.1 is a new state-of-the-art model from Meta. You'll get pre-installed Open WebUI + Ollama + Llama3.1-70B, it is a popluar way to self-hosted LLM models.

Enterprise GPU Dedicated Server - RTX A6000

/mo

  • 256GB RAM
  • GPU: Nvidia Quadro RTX A6000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Linux / Windows 10/11
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

Enterprise GPU Dedicated Server - A100(80GB)

/mo

  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 19.5 TFLOPS

Pre-installed Llama3.2-Vison-90B LLM Hosting

Llama 3.2 Vision is a collection of instruction-tuned image reasoning generative models. You'll get pre-installed Open WebUI + Ollama + Llama3.2-Vison-90B, it is a popluar way to self-hosted LLM models.

Multi-GPU Dedicated Server- 2xRTX 5090

/mo

  • 256GB RAM
  • GPU: 2 x GeForce RTX 5090
  • Dual E5-2699v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Blackwell 2.0
  • CUDA Cores: 21,760
  • Tensor Cores: 680
  • GPU Memory: 32 GB GDDR7
  • FP32 Performance: 109.7 TFLOPS
  • This is a pre-sale product. Delivery will be completed within 2–10 days after payment.

Enterprise GPU Dedicated Server - A100(80GB)

/mo

  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 19.5 TFLOPS

Pre-installed Llama4-16x17B LLM Hosting

The Llama 4 collection of models are natively multimodal AI models that enable text and multimodal experiences. You'll get pre-installed Open WebUI + Ollama + Llama4-16x17B, it is a popluar way to self-hosted LLM models.

Enterprise GPU Dedicated Server - A100(80GB)

/mo

  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 19.5 TFLOPS

Enterprise GPU Dedicated Server - H100

/mo

  • 256GB RAM
  • GPU: Nvidia H100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Hopper
  • CUDA Cores: 14,592
  • Tensor Cores: 456
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 183TFLOPS

Multi-GPU Dedicated Server - 4xRTX A6000

/mo

  • 512GB RAM
  • GPU: 4 x Quadro RTX A6000
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

LLaMA Hosting with Ollama — GPU Recommendation

Deploy Meta’s LLaMA models locally with Ollama, a lightweight and developer-friendly LLM runtime. This guide offers GPU recommendations for hosting LLaMA 2 and LLaMA 3 models, ranging from 3B to 70B parameters. Learn which GPUs (e.g., RTX 4090, A100, H100) best support fast inference, low memory usage, and smooth multi-model workflows when using Ollama.

Model Name
Size (4-bit Quantization)
Recommended GPUs
Tokens/s
llama3.2:1b 1.3GB P1000 < GTX1650 < GTX1660 < RTX2060 < T1000 < RTX3060 Ti < RTX4060 < RTX5060 28.09-100.10
llama3.2:3b 2.0GB P1000 < GTX1650 < GTX1660 < RTX2060 < T1000 < RTX3060 Ti < RTX4060 < RTX5060 19.97-90.03
llama3:8b 4.7GB T1000 < RTX3060 Ti < RTX4060 < RTX5060 < A4000 < V100 21.51-84.07
llama3.1:8b 4.9GB T1000 < RTX3060 Ti < RTX4060 < RTX5060 < A4000 < V100 21.51-84.07
llama3.2-vision:11b 7.8GB A4000 < A5000 < V100 < RTX4090 38.46-70.90
llama3:70b 40GB A40 < A6000 < 2*A100-40gb < A100-80gb < H100 < 2*RTX5090 13.15-26.85
llama3.3:70b,
llama3.1:70b
43GB A40 < A6000 < 2*A100-40gb < A100-80gb < H100 < 2*RTX5090 13.15-26.85
llama3.2-vision:90b 55GB 2*A100-40gb < A100-80gb < H100 < 2*RTX5090 ~12-20
llama4:16x17b 67GB 2*A100-40gb < A100-80gb < H100 ~10-18
llama3.1:405b 243GB 8*A6000 < 4*A100-80gb < 4*H100 --
llama4:128x17b 245GB 8*A6000 < 4*A100-80gb < 4*H100 --

LLaMA Hosting with vLLM + Hugging Face — GPU Recommendation

Run LLaMA models efficiently using vLLM with Hugging Face integration for high-throughput, low-latency inference. This guide provides GPU recommendations for hosting LLaMA 4/3/2 models (3B to 70B), covering memory requirements, parallelism, and batching strategies. Ideal for self-hosted deployments on GPUs like A100, H100, or RTX 4090, whether you're building chatbots, APIs, or research pipelines.

Model Name
Size (16-bit Quantization)
Recommended GPUs
Concurrent Requests
Tokens/s
meta-llama/Llama-3.2-1B 2.1GB RTX3060 < RTX4060 < T1000 < A4000 < V100 50-300 ~1000+
meta-llama/Llama-3.2-3B-Instruct 6.2GB A4000 < A5000 < V100 < RTX4090 50-300 1375-7214.10
deepseek-ai/DeepSeek-R1-Distill-Llama-8B meta-llama/Llama-3.1-8B-Instruct 16.1GB A5000 < A6000 < RTX4090 50-300 1514.34-2699.72
deepseek-ai/DeepSeek-R1-Distill-Llama-70B 132GB 4*A100-40gb, 2*A100-80gb, 2*H100 50-300 ~345.12-1030.51
meta-llama/Llama-3.3-70B-Instruct
meta-llama/Llama-3.1-70B
meta-llama/Meta-Llama-3-70B-Instruct
132GB 4*A100-40gb, 2*A100-80gb, 2*H100 50 ~295.52-990.61

Why LLaMA Hosting Needs a GPU Hardware + Software Stack

LLaMA models are computationally intensive

Meta’s LLaMA models — especially LLaMA 3 and LLaMA 2 at 7B, 13B, or 70B parameters — require billions of matrix operations to perform text generation. These operations are highly parallelizable, which is why modern GPUs (like the A100, H100, or even 4090) are essential. CPUs are typically too slow or memory-limited to handle full-size models in real-time without quantization or batching delays.

High memory bandwidth and VRAM are essential

Full-precision (fp16 or bf16) LLaMA models require significant VRAM — for example, LLaMA 7B needs ~14–16GB, while 70B models may require 140GB+ VRAM or multiple GPUs. GPUs offer the high memory bandwidth necessary for fast inference, especially when serving multiple users or handling long contexts (e.g., 8K or 32K tokens).

Inference engines optimize GPU usage

To maximize GPU performance, specialized software stacks like vLLM, TensorRT-LLM, TGI, and llama.cpp are used. These tools handle quantization, token streaming, KV caching, and batching, drastically improving latency and throughput. Without these optimized software frameworks, even powerful GPUs may underperform.

Production LLaMA hosting needs orchestration and scalability

Hosting LLaMA for APIs, chatbots, or internal tools requires more than just loading a model. You need a full stack: GPU-accelerated backend, a serving engine, auto-scaling, memory management, and sometimes distributed inference. Together, this ensures high availability, fast responses, and cost-efficient usage at scale.

Frequently asked questions

It depends on the model size and precision. For fp16 inference:
LLaMA 2/3/4 - 7B: RTX 4090 / A5000 (24 GB VRAM)
LLaMA 13B: RTX 5090 / A6000 / A100 40GB
LLaMA 70B: A100 80GB x2 or H100 x2 (multi-GPU)
LLaMA models can be hosted using:
vLLM (best for high-throughput inference)
TGI (Text Generation Inference)
Ollama (easy local deployment)
llama.cpp / GGML / GGUF (CPU / GPU with quantization)
TensorRT-LLM (NVIDIA-optimized deployment)
LM Studio, Open WebUI (UI-based inference)
LLaMA 2/3/4: Available under a custom Meta license. Commercial use is allowed with some limitations (e.g., >700M MAU companies must get special permission).
You can use:
vLLM + FastAPI/Flask to expose REST endpoints
TGI with OpenAI-compatible APIs
Ollama’s local REST API
Custom wrappers around llama.cpp with web UI or LangChain integration
LLaMA models support multiple formats:
fp16: High-quality GPU inference
int4: Low-memory, fast CPU/GPU inference (GGUF)
GPTQ: Compression + GPU compatibility
AWQ: NVIDIA optimized
Self-hosted: $1–3/hour (GPU rental, depending on model)
API (LaaS): $0.002–$0.01 per 1K tokens (e.g., Together AI, Replicate)
Quantized models can reduce costs by 60–80%
Yes. LLaMA models support fine-tuning and parameter-efficient fine-tuning (LoRA, QLoRA, DPO, etc.), especially on:
PEFT + Hugging Face Transformers
Axolotl / OpenChatKit
Loading custom LoRA adapters in Ollama or llama.cpp
You can download LLaMA Models on Hugging Face:
meta-llama/Llama-2-7b
meta-llama/Llama-3-8B-Instruct

Our Customers Love Us

From 24/7 support that acts as your extended team to incredibly fast website performance

Need help choosing a plan?

Need help? We're always here for you.